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Abstract

In order to produce products with constant quality, manufacturing systems need to be monitored for any unnatural deviations in

the state of the process. Control charts have an important role in solving quality control problems; nevertheless, their effectiveness is

strictly dependent on statistical assumptions that in real industrial applications are frequently violated. In contrast, neural networks

can elaborate huge amounts of noisy data in real time, requiring no hypothesis on statistical distribution of monitored

measurements. This important feature makes neural networks potential tools that can be used to improve data analysis in

manufacturing quality control applications. In this paper, a neural network system, which is based on an unsupervised training

phase, is presented for quality control. In particular, the adaptive resonance theory (ART) has been investigated in order to

implement a model-free quality control system, which can be exploited for recognising changes in the state of a manufacturing

process. The aim of this research is to analyse the performances of ART neural network under the assumption that predictable

unnatural patterns are not available. To such aim, a simplified Fuzzy ART neural algorithm is firstly discussed, and then studied by

means of extensive Monte Carlo simulation.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Statistical process control (SPC) is a methodology
based on several techniques, which is aimed at
monitoring manufacturing process output measure-
ments. Control charts are the most widely applied SPC
tools used to reveal unnatural variations of monitored
measurements, as well as to locate their assignable
causes. To use a control chart, samples of the output are
collected during manufacturing process, and sample
statistics are then plotted on the chart. If the process is
in a natural state, the sample statistics are expected to
plot within specific control limits. On the other hand, if a
special cause of variation is present, the sample statistics
are likely to plot outside the predefined control limits.
When an unnatural variation is signalled by control
chart, operators search for the special cause and make
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necessary corrections and adjustments to bring the
process back to the natural state.
Nowadays, with the widespread exploitation of auto-

mated production and inspection in several manufactur-
ing environments, the tasks of SPC traditionally
performed by quality practitioners have to be automated.
Hence, computer-based algorithms need to be developed
to implement, or at least help quality practitioners to
carry out, the various quality control tasks automatically.
Neural networks are promising and effective analysis
tools and, in the last decade, they have been widely used
in quality control (Zorriassantine and Tannock, 1998).
What makes neural networks popular is their ability to
learn from experience and to handle uncertain and
complex information in a competitive and quality
demanding environment. Notably, neural networks are
suitable for quality control because of their capacity for
handling noisy measurements requiring no assumption
about statistical distribution of the monitored data.
Several researchers have investigated applications of

neural networks for manufacturing quality control.
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Pugh (1991) proposed the first reported neural network
for quality control. The multi-layer perceptron (MLP)
network, trained by means of the supervised back-
propagation (BP) learning algorithm (Bishop, 1995), has
been used to detect mean shifts. Guo and Dooley (1992),
and Smith (1994) trained an MLP BP network for
identifying positive shifts in both mean and variance.
Cheng (1995) later, trained an MLP BP neural network
for identifying positive/negative shifts and upward/
downward trends of the process mean as well. Guh
and Tannock (1999) developed an MLP BP neural
network approach for concurrent unnatural pattern
recognition. Cook et al. (2001) discussed the develop-
ment of an MLP BP neural network to identify changes
in the variance of serially correlated process parameters.
The MLP BP network has been exploited successfully

in pattern recognition, but the slowness in training still
poses some inconveniences for practical applications.
Indeed, the convergence of the BP algorithm requires a
huge number of iterations, as well as an adequate
number of training examples. Therefore, other feed-
forward neural networks for quality control have been
proposed in the literature. For example, Cook and Chiu
(1998), in order to recognise mean shifts in auto-
correlated manufacturing process parameters, proposed
a radial basis function (RBF) neural network system.
A shared feature of the most diffused neural methods

for quality control is the exploitation of supervised
training algorithms. The use of these techniques is based
on the hypothesis that user knows in advance the group
of unnatural patterns that must be discovered by neural
network. A prior knowledge of pattern shapes is
essential for generating training data that mimic the
actual unnatural outcomes. However, in real industrial
cases, unnatural process outcomes cannot be manifested
by the appearance of predictable patterns, thus math-
ematical models are not readily available or they cannot
be formulated.
The present paper proposes a different neural net-

work approach for process monitoring, when no
previous knowledge on the distribution of unnatural
data is available. The proposed approach is based on the
adaptive resonance theory (ART) neural network that is
capable of fast, stable and cumulative learning.
The ART network is a neural algorithm, which is used

to cluster arbitrary data into groups with similar
features. Al-Ghanim (1997) presented an ART1 neural
network (the binary version of the ART algorithm) as a
means to distinguish natural from unnatural variations
in the outcomes of a generic manufacturing process. The
author proposed to train the ART1 network using a set
of natural data patterns produced by the monitored
process. During the training phase, the network clusters
natural patterns of data into groups with similar
features, and when it is confronted by a new input, it
produces a response that indicates which cluster the
pattern belongs to (if any). Therefore, the neural
network is not intended to indicate the type of unnatural
pattern detected in process outputs. It provides an
indication that a structural change in process outputs
has occurred when input pattern does not fit to any of
the learned natural categories.
The use of a neural system that monitors process

outputs without a prior knowledge of unnatural
patterns is appealing in real industrial applications.
Indeed, only knowledge of the natural behaviour of the
process is required in order to train the neural network.
Furthermore, the neural network can operate in a
plastic mode (i.e. a continuous and cumulative training
mode) as long as new patterns are presented to it.
The remainder of this paper is structured as follows.

The ART is presented in Section 2. The reference test
case is illustrated in Section 3. The proposed Fuzzy
ART neural system and the training/testing algorithms
are discussed in Section 4 and 5, respectively. Then,
simulation methodology and experimental results are
both provided in Section 6. Finally, the last section gives
conclusions and discusses some directions for further
research.
2. The adaptive resonance theory

ART was introduced as a theory of human cognitive
information processing. This theory has led to an
evolving series of neural network models for unsuper-
vised and supervised category learning. These models,
including ART1, ART2, ARTMAP, Fuzzy ART, and
Fuzzy ARTMAP, are capable of learning stable
recognition categories in response to arbitrary input
sequences (Pao, 1989; Hagan et al., 1996).
ART1 can stably learn to categorise binary inputs and

ART2 can learn to categorise analog patterns presented
in an arbitrary order. ARTMAP can rapidly self-
organise stable categorical mappings between m-dimen-
sional input vectors and n-dimensional output vectors.
Fuzzy ART, which incorporate computations from
fuzzy set theory into the ART1 neural network, is
capable of fast stable learning of recognition categories
in response to arbitrary sequences of either analog or
binary input patterns (Huang et al., 1995; Georgiopou-
los et al., 1996, 1999). Fuzzy ARTMAP, the combina-
tion of ARTMAP with Fuzzy ART, can rapidly learn
stable categorical mappings between analog input and
output vectors.

2.1. The ART algorithm

ART is composed of two major subsystems, the
attentional and the orienting subsystem. While in the
attentional subsystem familiar patterns are processed,
the orienting subsystem resets the neural activity
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whenever an unfamiliar pattern is presented as input.
Two layers of nodes, namely F1 (called the comparison
layer) and F2 (called the recognition layer) which are
fully connected by both bottom-up and top-down
weights, compose the attentional subsystem. The bot-
tom-up and top-down weights between F1 and F2 can
be updated adaptively in response to input patterns.
While the comparison layer (F1) acts as a feature

detector that receives external input, the recognition
layer (F2) acts as a category classifier that receives
internal patterns. The application of a single input
vector leads to a neural activity that produces a pattern
in both layers F1 and F2. These patterns remain in the
network only during the application of current input.
The orienting subsystem is responsible for generating a
reset signal to F2 when the bottom-up input pattern and
the top-down template mismatch according to a
vigilance criterion. This reset signal, if sent, will stop
the neural activity of the recognition layer, and during
training the network adapts its structure by immediately
storing the novelty in additional nodes of the layer F2. If
the reset signal is not sent, the formerly coded pattern
associated with the category node that represents the
best match to current input, will be modified to include
the input features. The vigilance criterion depends on
the vigilance parameter. The choice of high values for
the vigilance parameter implies that only a slight
mismatch will be tolerated before a reset signal is
emitted. In contrast, small values of vigilance imply that
large mismatches will be tolerated.

2.2. Fuzzy ART

Using one of the unsupervised ART networks rather
than the simpler competitive learning system, important
stability properties of the network can be exploited
(Haykin, 1999). Indeed, unlike competitive learning,
when new patterns are produced by the monitored
process, ART networks can continue to learn (without
forgetting past learning) and incorporate new informa-
tion. ART1, ART2 and Fuzzy ART are examples of
unsupervised ART methods, which are capable of
learning in both off-line (batch) and on-line (incremen-
tal) training modes. Dissimilarities among input pat-
terns are only considered in their measurement space for
clustering (unsupervised training). After clustering this
space, each of their clusters is given by a weight vector
(the template).
ART1 only tolerates binary (‘0’ or ‘1’ coded) numbers

within an input vector. ART2 and Fuzzy ART can
process any real number, scaled to the continuous range
between 0 and 1. The differences between ART2 and
ART1 reflect the modifications needed to accommodate
patterns with continuous-valued components. The F1
field of ART2 is more complex because continuous-
valued input vectors may be arbitrarily close together.
The F1 field in ART2 includes a combination of
normalisation and noise suppression, in addition to
the comparison of the bottom-up and top-down signals
needed for the reset mechanism.
Fuzzy ART is the most recent adaptive resonance

framework that provides a unified architecture for both
binary and continuous value inputs. Fuzzy ART
operations reduce to ART1 (which accepts only binary
vectors) as a special case. The generalisation of learning
both analog and binary input patterns is achieved by
replacing the appearance of the logical AND intersec-
tion operator (

T
) in ART1 by the MIN operator (4) of

fuzzy set theory.
By incorporation from fuzzy set theory into ART1,

Fuzzy ART does not require a binary representation of
input patterns to be clustered; however, it possesses the
same desirable properties as ART1 and a simpler
architecture than that of ART2. There are two
important differences between ART2 and Fuzzy ART.

* The first is in their measures of dissimilarity between
input patterns and templates: Fuzzy ART uses the
city-block distance metric (or Manhattan distance,
which derives from the MIN operator of the fuzzy set
theory) rather than the Euclidean norm distance as in
the ART2. Each category of Fuzzy ART is repre-
sented by the simplest statistics about its data: the
minimum and the maximum in each dimension,
which are learned to conjointly minimise predictive
error and maximise predictive generalization. A
hyper-rectangle represents the range of acceptable
category vectors. Multiplications are not required for
weight adaptations and the algorithm can perform
well with few digits of weight precision. On the other
hand, the ART2 architecture requires highly complex
reset and choice functions, which are based on
Euclidean norm.

* The second is in the way they pre-process their data
(normalisation of input patterns). For ART2 the
normalisation of input patterns is obtained by
dividing each vector by its Euclidean norm. Hence,
ART2 is able to achieve good categorisation of input
patters only if they are all normalised to a constant
common length. However, such normalisation can
destroy valuable amplitude information that, instead,
is necessary for quality monitoring. In order to save
such information, Fuzzy ART uses complement

coding, which transforms every M-dimensional input
vector into a 2M-dimensional vector, as normal-
isation pre-processing. With complement coding,
Fuzzy ART is able to achieve good categorization
of input patters even if input vectors have not the
same norm.

An additional desirable property of Fuzzy ART is
that, due to the simple nature of its architecture,
responses of the neural network to input patterns are
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easily explained, in contrast to other models, where in
general, it is more difficult to explain why an input
pattern produces a specific output. Significant insight
has been gained in the past by attributing a geometrical
interpretation to the Fuzzy ART categories, and
recently, novel geometric concepts have been introduced
in the original framework. Detailed properties of
learning for Fuzzy ART can be found in Huang et al.
(1995), Georgiopoulos et al. (1996, 1999), Anagnosto-
poulos and Georgiopoulos (2002).
Because of its algorithmic simplicity, and of the

several properties that facilitate the implementation of
the neural network, Fuzzy ART neural network has
been exploited in this paper for analog pattern clustering
in quality monitoring applications.
3. The reference manufacturing process model

In order to investigate Fuzzy ART performances for
quality control applications, a generic manufacturing
process has been synthetically reproduced by means of a
computer program. The code is based on the pseudo-
random number generator provided by the MATLABs

software environment (Vattulainen et al., 1995).
The running of a control chart, as well as of a neural

network algorithm, can be considered a periodically
repetitive statistical test. At each time t; a specific
subset of the past output data is used to evaluate the
state of the process. The null hypothesis H0 and the
alternative hypothesis H1 of the test can be formulated
as follows:

* H0: the process is in a natural state.
* H1: the process is not in a natural state.

As with every statistical test, errors of Type I and
Type II can occur. They can be formulated as follows:

* Error of Type I: Some action is taken although the
process is under control (false alarm).

* Error of Type II: No action is taken although the
process is out of control.

The focus of this research is on processes with a single
quality parameter of interest. Let fYtg be the random
sequence of the observed quality characteristic, where
t=1, 2,y denotes a discrete time index or part number.
The random time series fYtg has been simulated by
means of a probabilistic model. A process in a natural
state is realistically modelled by a system in which the
output is the sum of a constant nominal mean (i.e. the
process target m), added to a random natural variation
component. This random component, which models the
natural process variability, is a time series of normally,
independently and identically distributed (NIID) values
with mean zero and common standard deviation s:
Without loss of generality, it is assumed that m ¼ 0 and
s ¼ 1 (a standardisation of the monitored measure-
ments can be implemented otherwise). This model gives
a close approximation to many types of practical
manufacturing processes. In situations where these
assumptions are violated, a power transformation
technique can be implemented in order to reduce
anomalies such as non-normality and heteroscedasticity
of the monitored measurements.
On the other hand, when the process starts drifting

from the natural state, a form of a special disturbance
signal overlaps the series of process output measure-
ments. This special disturbance signal is usually referred
to as the unnatural pattern.
Thus, let fZtg be the time series of the natural process

data, and let fStg be the time series of the special
disturbance signal. The statistical test can be formulated
as follows:

ZtBNIIDð0; 1Þ;

H0 : Yt ¼ Zt;

H1 : Yt ¼ Zt þ St: ð1Þ

In order to simulate the process in an unnatural state,
the mean shift will be used as unnatural pattern in the
reference test case (Montgomery, 2000). The primary
possible causes for the mean shift may result from the
introduction of new machines, workers, or methods.
Other possible reasons include the minor failures of a
machine part or changes in the skill level of the
operators. Assuming j the amplitude of the shift and
t the instant of shifting, then a shift pattern can be
modelled as follows:

St ¼
0 tot

j tXt

(
8t ¼ 1; 2;y : ð2Þ

A quality control system is designed in order to
perform binary discrimination between natural and
unnatural classes of data. Two performance measures
are used.

* The first is the ability to model the common causes of
variation without creating Type I errors (i.e. false
alarms), which indicate that the process is out of
control when it is in fact not. This property is
experimentally measured by reporting the mean of
Type I errors (i.e. the sample mean of the alarm
signals) occurring in process data only having natural
sources of variation. This value is a consistent point
estimator of the parameter a ¼ PfH1jH0g i.e. the
expected probability that the control system signals
an alarm when the process is in the natural state.

* The second is the ability to detect unnatural patterns
in process output data. This property is measured
experimentally by reporting the mean of Type II
errors (i.e. the non-alarm signals) when a special
disturbance has been introduced in process data. This
value is a consistent point estimator of the parameter
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b ¼ PfH0jH1g; i.e. the expected probability that the
control system signals no alarm although the process
is actually out of control. Generally, the objective of
any quality control system is to detect changes of the
process parameters as fast as possible (a small Type II
error rate), without too many false alarms (a small
Type I error rate).
4. Outline of the proposed Fuzzy ART system

Fig. 1 shows the proposed neural system for quality
control and the manufacturing process model. Let fYtg
be the random sequence of the observed quality
characteristic (t ¼ 1; 2,y). The control system accepts
as input the process output Yt; and it produces the
output binary signal bnn;t; which will be set to bnn;t ¼ 1 if
the process is considered in a natural state, bnn;t ¼ 0
otherwise.
As showed by Fig. 1, some data pre-processing stages

take place before they are presented to the Fuzzy ART
neural network. The first stage is called the Window

Forming. Through it, the most recent M observations
are collected, to form the network M-dimensional input
vector. Denoting as

%
Y t the output of the Window

Forming stage, at each time of index tXM it can be
defined as

%
Y t ¼ ½Yt
Mþ1;Yt
Mþ2;yYt
1;Yt� tXM: ð3Þ

In the most diffused literature, the parameter M is
referred to as the Window Size of the quality control
neural system (Cheng, 1995, 1997; Cheng and Cheng,
2001).
The second pre-processing stage (Coding) takes an M-

dimensional input pattern
%
Y t and transforms it into the

corresponding M-dimensional output vector (say
%
I t)

whose components fall into the interval [0,1]. This pre-
Zt

St

+ Yt
Coding

Window
Forming

network

bnn, t

M

tY

tI

Zt

St

+ Yt
Coding

Window
Forming

Fuzzy ART
network

bnn, t

M

tY

tI

�

Fig. 1. A general manufacturing system model and the proposed

neural system for quality control.
processing stage consists of a linear re-scaling of the
input variable into the range [0,1]. Denoting with l > 0 a
proper limit for the absolute variation of the process
output values fYtg from the nominal mean (in the
reference test case, the parameter l is equal to l ¼ 3), the
Coding pre-processing is described by the following
Eq. (4):

%
I t ¼ ½It
Mþ1; It
Mþ2;yIt
1; It� tXM;

It ¼ 0; Yto
 l;

It ¼
1

2
1þ

Yt

l

� �

lpYtpl;

It ¼ 1; loYt;

8>>><
>>>:

t 
 M þ 1ptpt;

ð4Þ

Besides comparison (F1) and recognition (F2) layers,
a complementary field (F0), has been implemented to
form the attentional subsystem. In the layer F0,
complement coding on the incoming input vectors

%
I t ¼

½It
Mþ1; It
Mþ2;yIt
1; It� is implemented. At each time
of index tXM ; the F0 field accepts an M-dimensional
input vector

%
I t; and it produces a 2M-dimensional

output vector
%
I ct towards the F1 layer. Denoting %

1 as the
M-dimensional all-one vector, the following schema can
be used for complement coding:

%
I ct ¼ ð

%
I t;

%
1


%
I tÞ

¼ ½It
Mþ1; It
Mþ2;yIt; 1
 It
Mþ1; 1
 It
Mþ2y; 1
 It�:

ð5Þ

The F1 and F2 fields are fully connected by weighed
links. The 2M-dimensional vector, whose components
are the weights that connect node j of F2 field to each
node of F1, is designated by

%
wc

j : The orienting subsystem
consists of a single node called the reset node. The reset
node output, which depends on the vigilance parameter
r; affects the nodes of the F2 layer.
In quality control applications, the operating phases

of the Fuzzy ART neural network can be carried out as
follows.
For training, it is assumed that process output

patterns (the training list) are available. Commonly,
such data are the measurements of a quality parameter
of interest when only natural causes of variation are in
effect. The number of patterns in the training list,
hereafter called the learning period (Al-Ghanim, 1997),
depends on the time length of the process output series
that is used for neural network training. The underlying
assumption is that in the learning period the process
under inspection produces only natural outputs that are
clustered into categories by means of the Fuzzy ART
network. Obviously, the neural network will cluster
patterns that are similar to each other in the same
category. The ART algorithm allows user to control the
degree of similarity of patterns placed in the same
cluster. The meaning of similarity depends on the
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vigilance parameter r that is used in the training phase.
Higher vigilance imposes a stricter matching criterion
that separates input patterns into finer categories. In
contrast, lower vigilance tolerates greater mismatches,
and it produces coarse categories. During training, the
maximal vigilance parameter enables Fuzzy ART to
classify input patterns into the highest recognition rate.
In particular, if the vigilance assumes the maximum
value, then the neural network forms categories that
duplicate the specific patterns used for training (Per-

fectly Learned Patterns—PLP). A cluster that has been
formed during the PLP training phase cannot change in
the subsequent list presentation; consequently, the
sufficient number of list presentations to assure the
convergence of training phase, can be reduced to one
(Huang et al., 1995).
In the testing phase, the learning process is disengaged

(i.e. no more weights adaptations or cluster creations are
allowed) and patterns from a test list are presented in
order to evaluate neural network performances. A
pattern from the test list is presented to the neural
network, and through the Fuzzy ART algorithm, a
category is chosen if it is found appropriate to represent
the input. The criterion to determinate how well a
category represents the cluster, to which the input
pattern belongs, depends on the vigilance value chosen
for the testing phase (that can be different from the
value used in the training one). In particular, higher
vigilance imposes a stricter matching criterion, while
lower vigilance tolerates greater mismatches between
input patterns and the ART categories.
5. Training and testing of the proposed Fuzzy ART

system

Before discussing the Fuzzy ART algorithm in more
detail, some preliminary notations must be introduced.
From now on, the size of vector

%
x will be denoted as:

j
%
xj ¼

P
i jxi j: The minimum between vectors

%
x and

%
y is

defined as
%
x4

%
y ¼½minðx1; y1Þ;yminðxi; yiÞ;y�; while

the maximum as
%
x3

%
y ¼½maxðx1; y1Þ;ymaxðxi; yiÞ;y�;

The distance between
%
x and

%
y vectors is defined as

disð
%
x;

%
yÞ ¼ j

%
x3

%
yj 
 j

%
x4

%
yj: Using the definition of min

and max operators, the distance function can be
rewritten as disð

%
x;

%
yÞ ¼

P
i jxi 
 yij:

5.1. Training phase

During training, the maximal vigilance is used (PLP).
In Appendix A, a detailed description of the PLP
training algorithm has been reported. It can be noticed
that the PLP learning approach causes that each input
pattern is stored in a distinct category during training. A
very important and convenient characteristic of the
proposed learning approach is the short training time.
Indeed, a cluster that has been formed during the PLP
training phase cannot change in the subsequent list
presentation and, consequently, the number of list
presentation can be reduced to one. Furthermore, the
sequence of training presentation has not influence on
the neural network training, as each pattern is stored in
a specific category.
Using the maximum vigilance during training, the

others network parameters (the choice parameter and
learning rate) have no influence on learning (Huang
et al., 1995), as once a category is formed, it cannot be
modified during subsequent training iterations (the
maximum vigilance causes a reset signal if a committed
node wins the competition in the F2 layer during
training). Each new training pattern is clustered into an
uncommitted node, and the neural network forms a
number of categories equal to the number of different
training patterns. Consequently, each top-down vector
(or category) can be also expressed in the following form

%
wc

j ¼ ð
%
wj ;

%
1


%
wjÞ; where

%
wj is an M-dimensional pattern

and
%
1 is the M-dimensional ‘‘all-one’’ vector. An

important consequence of the latter result is that
the size of vectors

%
wc

j is equal to M, indeed j
%
wc

t j ¼
jð
%
wt;

%
1


%
wtÞj ¼ j

%
wtj þ M 
 j

%
wtj ¼ M:

5.2. Testing phase

Fig. 2 depicts the basic architecture of Fuzzy ART
neural network, which has been implemented by means
of the NeuralWorks Professional II Pluss software
environment (NeuralWare, 1997).
Assume that at time of index tXM an M-dimensional

input pattern
%
I t is presented at the F0 field. The

appearance of the 2M-dimensional pattern
%
I ct across

the F1 field produces bottom-up inputs that affect the
nodes in the F2 layer. These bottom-up inputs are given
by the following Eq. (6) for indexes 1pjpN and a
arbitrarily chosen in the range ð0;þNÞ:

Tjð
%
I ct Þ ¼

j
%
I ct4%

wc
j j

aþ M
: ð6Þ

The bottom-up inputs activate a competition process
among the F2 nodes, which eventually leads to the
activation of a single node in F2, namely the node
that receives the maximum bottom-up input form F1.
Let J be the index of the node in the F2 layer that
maximises the choice function Tjð

%
I ct Þ; i.e. the vector %

wc
J is

assumed as the representative category for the
input pattern

%
I ct : The appropriateness of the natural

category to represent the input pattern is checked by
comparing the ratio of Eq. (7), to the vigilance
parameter r of the testing phase, which assumes values
in the range (0, 1).

j
%
I ct4%

wc
J j

M
: ð7Þ



ARTICLE IN PRESS

c
tI

( )tt
c
t I1II = ,

( )
M

T

c
j

c
t

tj +

 
=

 

wI
I

   c
J

c
t wI

tI

tnnb ,

c
J

c
t wI  

c
Jw

c
J

c
t wI  

0F

1F

2F Reset
( )JChoice

Match

Coding

Complement

Attentional
Subsystem

Orienting
Subsystem

c
tI

( )tt
c
t I1II = ,

( )
M

T

c
j

c
t

tj +

 
=

 

wI
I

   c
J

c
t wI

tI

tnnb ,

c
J

c
t wI  

c
Jw

c
J

c
t wI  

0F

1F

2F Reset
( )JChoice

Match

ing

t

Attentional
Subsystem

Orienting
Subsystem

c
tI

tt
c
t I1I −= ,

( )
M

T

c
j

c
t

tj +

∧
=

α

wI
I

≥∧ M.�c
J

c
t wI

tI

tnnb ,

c
J

c
t wI ∧

c
Jw

c
J

c
t wI ∧1F

2F s t
( )i

�

Fig. 2. The proposed Fuzzy ART neural network for manufacturing

quality control.
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If such ratio is not less than the vigilance parameter r;
then the output is set to bnn;t ¼ 1 (natural input),
otherwise, the algorithm produces the output bnn;t ¼ 0
(unnatural input). Since it results that

j
%
I ct4%

wc
J j ¼ jð

%
I t;

%
1


%
I tÞ4ð

%
wJ ;

%
1


%
wJ Þj
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 j

%
I t3

%
wJ j;

j
%
I ct4%
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J j ¼M 
 disð

%
I t;

%
wJÞ:

It may be noted that the node J; whose top-down
weight vector

%
wc

J ¼ ð
%
wJ ;

%
1


%
wJÞ maximises the choice

function (6), is also that node which minimises the
distance disð

%
I t;

%
wJ Þ: Thus, an input pattern is classified as

natural if the following condition (8) is passed:

j
%
I ct4%

wc
J j

M
Xr3disð

%
I t;

%
wJÞpMð1
 rÞ: ð8Þ

6. Experiment and analysis

Three parameters can affect the performances of the
proposed neural system for quality control.

1. The vigilance parameter r of testing phase, it can take
values in the range (0,1).
2. The window size M; it can take values in {1, 2, 3,y},
i.e. any non-zero integer.

3. The training period d; i.e. the number of training
patterns.

In order to estimate their effects on the system
performances, which are measured in terms of both
Type I error and Type II error rates, a complete
experimental design was used (Montgomery, 1997). For
simplicity, each of the three factors was evaluated by
means two proper levels (high and low), thus eight
experimental scenarios was analysed.
Both a number of 15 training data sets and of

15 different testing data sets were produced by means
of Monte Carlo simulation. To make this random
generation different for all data sets, a different seed
of the MATLABs pseudo-random generator was
specified for each distinct training or testing series.
Simulation replications were obtained combining
each training data set to all the testing sets. Thus,
a number of 15� 15=225 different replications, for
each of the eight experimental scenarios, were
obtained.
Each training data set included a number of d M-

dimensional vectors, while testing data sets were formed
by means of 10000 M-dimensional vectors. Training
data sets, as well as testing data sets, used to estimate
Type I errors, were simulated by means of the normal
distribution function (mean m ¼ 0 and standard devia-
tion s ¼ 1). On the other hand, the testing data sets used
to estimate Type II errors, were simulated through a
shift pattern (Eq. (2)) of 1.5 units of standard deviation
(j ¼ 1:5), and starting point in the fifth observation
(t ¼ 5).
Before presenting simulation results, let us elaborate

on the experiment model in more detail. The relation-
ship between the Type I error and the network
parameters can be formulated as follows.

aðr;M ; dÞ ¼ f ðr;M; dÞ þ eðr;M; dÞ; ð9Þ

where the function f ðr;M ; dÞ is the expected Type I
error level for the parameter combination ðr;M ; dÞ; and
aðr;M ; dÞ is the actual simulation measure. The actual
measure is affected by an error eðr;M; dÞ that can be
considered as an occurrence of a random variable with
mean zero. Three sources of variability can affect the
random error eðr;M ; dÞ: the training set, the testing set
and the interaction between them. The effect of training
data set on the actual measure aðr;M ; dÞ is designated
as elðr;M ; dÞ; while the effect of testing data set
is designated as etðr;M; dÞ: Therefore, denoting
eltðr;M; dÞ the effect of the interaction between the
two factors, Eq. (9) can be rewritten as follows:

aðr;M ; dÞ ¼ f ðr;M ; dÞ þ elðr;M; dÞ

þ etðr;M ; dÞ þ eltðr;M ; dÞ: ð10Þ
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Fig. 3. Type I main effect plot. Simulation results based on 225

replications of 10,000 trials for each of the eight scenarios. The

horizontal line represents the mean value of the Type I error.
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Denoting with symbols s2l ðr;M; dÞ; s2t ðr;M ; dÞ;
s2ltðr;M ; dÞ the variance values of random components
elðr;M; dÞ; etðr;M ; dÞ and eltðr;M ; dÞ; respectively, then
the variance of aðr;M; dÞ can be rewritten as
s2aðr;M; dÞ ¼ s2l ðr;M ; dÞ þ s2t ðr;M; dÞ þ s2ltðr;M ; dÞ: A
similar model can be formulated for the Type II error,
so the following Eq. (11) can be used in this case:

bðr;M ; dÞ ¼ gðr;M ; dÞ þ eLðr;M; dÞ

þ eT ðr;M ; dÞ þ eLT ðr;M ; dÞ: ð11Þ

That implies s2bðr;M ; dÞ ¼ s2Lðr;M; dÞ þ s2T ðr;M ; dÞ þ
s2LT ðr;M; dÞ:

6.1. Analysis

As already mentioned, to find out how the three
parameters ðr;M ; dÞ influence network performances,
both the Type I and Type II error rates have been
estimated in eight scenarios. Two window sizes ðM ¼
10225Þ; two levels of the vigilance parameter ðr ¼
0:8520:90Þ and two learning periods ðd ¼ 10021000Þ;
have been used. The resulting Type I error rates have
been presented in Table 1.
Following Fig. 3 shows the main-effect plots for each

experimental factor.
It results that as the vigilance parameter increases,

the Type I error rate increases too. Similarly, a higher
window size causes the Type I error to increase. In
contrast, a long training period produces a smaller
Type I error. It can be noticed that variations of the
vigilance parameter and of the window size can have
considerable effects on Type I errors, while changes of
the training period have only slight influence on the
false alarm rate. Moreover, the Analysis of Variance
(ANOVA—Montgomery, 1997) of the simulation results,
underlines that there is considerable interaction between
the vigilance parameter r and the window size M ; in
terms of their effects on Type I errors.
The eight standard-deviation point estimators

#saðr;M; dÞ of Table 1 measure the spread of perfor-
mances around the false alarm point-estimators
#fðr;M; dÞ: It results that changes in the training data
set, as well as in the testing data set, have not important
Table 1

Type I errors and standard deviations. Simulation results based on 225 repl

r M d #fðr;M; dÞ (%) #slðr;M; dÞ (%)

0.85 10 100 1.100 0.197

0.85 10 1000 0.027 0.004

0.85 25 100 7.656 2.293

0.85 25 1000 0.337 0.031

0.90 10 100 42.276 3.773

0.90 10 1000 7.661 0.189

0.90 25 100 97.906 1.090

0.90 25 1000 84.036 1.781
effects on Type I errors. Nevertheless, it can be noticed
that short learning period ðd ¼ 100Þ can cause higher
influence of the training data set on the false alarm rate
presented by the neural system.
Type II errors are reported in following Table 2, while

the main effect plots are depicted in Fig. 4.
In this case, it can be deduced that as the vigilance

parameter increases, the Type II error decreases.
Similarly, a larger window size causes the decrease of
Type II error, while a longer training period produces
slightly higher Type II error. By comparing plots of
Figs. 3 and 4, it appears that the effects of the three
parameters on the Type II error are smaller than those
presented on Type I error. As for Type I error measures,
the Analysis of Variance shows that there is significant
interaction between the vigilance parameter and window
size in terms of Type II error as well.
Results of Table 2 reveal that changes of training/

testing data set can have valuable effects on Type II
errors. Moreover, it can be observed that the variability,
which is due to changes of training set, is higher than
that obtained varying the testing set. In other words, it
appears that the spread of the neural network perfor-
mances in terms of Type II error mainly depends on the
training data set rather than on the choice of the testing
data set.
To analyse in more detail the experimental results,

and how the vigilance parameter r affects network
ications of 10,000 trials for each of the eight scenarios

#stðr;M; dÞ (%) #sltðr;M; dÞ (%) #saðr;M; dÞ (%)

0.187 0.136 0.304

0.017 0.018 0.025

0.898 0.509 2.515

0.134 0.084 0.161

1.191 0.671 4.013

0.662 0.292 0.748

0.187 0.319 1.151

1.018 0.604 2.138
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Table 2

Type II errors and standard deviations. Simulation results based on 225 replications of 10,000 trials for each of the eight scenarios

r M d #gðr;M; dÞ (%) #sLðr;M; dÞ (%) #sT ðr;M; dÞ (%) #sLT ðr;M; dÞ (%) #sbðr;M; dÞ (%)

0.85 10 100 26.970 20.174 0.829 0.547 20.198

0.85 10 1000 57.938 11.517 1.042 0.632 11.581

0.85 25 100 1.101 3.533 0.089 0.301 3.548

0.85 25 1000 4.298 3.998 0.531 0.387 4.052

0.90 10 100 2.238 3.486 0.139 0.237 3.497

0.90 10 1000 8.114 3.405 0.477 0.406 3.461

0.90 25 100 0.000 0.000 0.000 0.001 0.001

0.90 25 1000 0.001 0.001 0.000 0.004 0.004
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Fig. 4. Type II main effect plot. Simulation results based on 225

replications of 10,000 trials for each of the eight scenarios. The

horizontal line represents the mean value of the Type II error.
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performances, consider the plots shown in Fig. 5. Each
graph depicts the distributional characteristics of
experimental results. The box-plots (also called box-
and-whisker plots) of either Type I or Type II error rates
with each combination of the parameters M ¼ 10225;
r ¼ 0:8520:90 and d ¼ 10021000:
Simulation results demonstrate that the most impor-

tant effects on the Type I error and Type II error rates
derive from the vigilance parameter, the window size
and their interaction as well. In contrast, larger training
period can have only slight effects on the Type I error
and Type II error rates. Nevertheless, large values of d

can reduce the variability of neural network perfor-
mances, especially when a large window size is used. In
order to confirm such result, Fuzzy ART neural
network has further been tested using both a larger
window size and a higher training period. In the
following Table 3 the Type I error and Type II error
estimators have been reported in the case of M ¼ 75 and
d ¼ 7500; over a number of 225 replications of 10,000
trials produced by means of Monte Carlo simulation. As
already mentioned, replications have been obtained
using combinations of 15 training data sets and 15
different testing data sets.
In this case, it can be observed that both training and

testing data sets have no influence on the neural network
performances in terms of Type II errors. Indeed, the
Type II error is equal to its lower limit #b ¼ 0%
constantly. On the other hand, the influence of the
training set on the Type I error results either small ðr ¼
0:85Þ; or null ðr ¼ 0:90Þ: In this case, the huge training
period d; and the large windows size M make the
network not easily influenced by changes of training
data set.

6.2. Selection of neural network parameters

Even if the optimal combination of the network
parameters depends on economic factors related to Type
I error and Type II error costs, a reasonable strategy to
use the proposed system can be obtained using following
remarks:
First, the window forming pre-processing stage implies

that the neural network cannot release a signal on the
process state before the first M parts have been
produced. Thus, if a process were in an unnatural state
due an incorrect set up operation, at least M 
 1 out-of-
control outputs could be produced before a signal is
emitted by the neural network. Consequently, large
values of window size can increase scrap and rework
costs. On the other hand, simulation results have
demonstrated that larger window sizes are recom-
mended in order to reduce Type II errors. Thus, the
choice of M should be based on the minimum change in
the mean that is important to detect, in the sense that
lower disturbances in the process requires higher
window sizes, in order to be detected efficiently.
The duration of training period depends on the

availability of process natural outcomes. About 1000
data have shown to be appropriate to train the neural
network in the reference manufacturing process. How-
ever, when the number of natural samples is limited to
form an adequate training data set, bootstrap sampling
can be used (Wehrens et al., 2000). Bootstrapping
sampling scheme can be adopted to generate many
samples from limited observations by pursuing the fact
that these samples could represent an underlying process
distribution.
Finally, it has been observed that the vigilance

parameter has a great influence on Type I error; hence,
it can be used to control the false alarm level. For
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Fig. 5. Box-plots of experimental results. Simulation results based on 25 replications of 10,000 trials for each value of the vigilance parameter. The

bottom of each box is at the first quartile, and the top is at the third quartile value. The central line is at the median value.

Table 3

Type I and Type II errors and standard deviations, for M ¼ 75 and d ¼ 7500: Simulation results based on 225 replications of 10,000 trials for each

value of the vigilance parameter

r #fðr;M; dÞ (%) #slðr;M; dÞ (%) #stðr;M; dÞ (%) #sltðr;M; dÞ (%) #saðr;M; dÞ (%)

0.85 3.472 0.267 0.974 0.405 1.088

0.90 100.00 0.000 0.000 0.000 0.000

r #gðr;M; dÞ (%) #sLðr;M; dÞ (%) #sT ðr;M; dÞ (%) #sLT ðr;M; dÞ (%) #sbðr;M; dÞ (%)

0.85 0.000 0.000 0.000 0.000 0.000

0.90 0.000 0.000 0.000 0.000 0.000
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example, once the window size has been fixed (depend-
ing on the Type II error), the vigilance parameter can be
adjusted in order to obtain the appropriate Type I error
rate from the neural system.
Therefore, a strategy for applying the proposed Fuzzy

ART control system in real applications can be obtained
by means of the following steps:

* Identify the minimum variation of the process-mean,
which it is important to detect quickly (say j in terms
of units of standard deviations).

* Choice the window size M as a function of the
smaller standardises change in the mean considered
important to detect quickly (say j). Usually, smaller
j requires higher window size, thus a rule of thumb is
to choice M ¼ m=j (m ¼ 75 is the recommended
value).

* Use a set of representative process natural data for
network training.

* Adjust the value of the vigilance parameter in order
to obtain a predefined Type I error rate (tuning

phase), indeed higher vigilance imposes higher Type I
errors, lower vigilance impose lower Type II errors.

6.3. Over and under training

The correct training level of the proposed ART-based
approach is only influenced by the number of training
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Fig. 6. Type I error vs. step number for the configuration method that

determines the vigilance parameter r and the training period d for a

given window size M:

Table 4

Type I and Type II errors and standard deviations. M ¼ 75; r ¼
0:8353 and d ¼ 2000

r M d j #fðr;M; dÞ (%) #saðr;M; dÞ (%)

0.8353 75 2000 0.0 0.277 0.270

r M d j #gðr;M; dÞ (%) #sbðr;M; dÞ (%)

0.8353 75 2000 0.5 92.965 3.151

0.8353 75 2000 1.0 8.291 5.241

0.8353 75 2000 1.5 0.000 0.000
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patterns. The avoidance of both under-training and
over-training is an important point for every neural
network application (including quality monitoring).
Over-training can result when, due to excessive exposure
to the training data set, the network loses its ability to
generalise and can only recognise the training data.
Under-training can occur when training set is of such
small size that the number of training patterns is
inadequate to cover the complete state-space of the
process natural behaviour. The performance of the
proposed ART neural network does not suffer from
over-training phenomena, but only from under-training.
The choice of both vigilance parameter and training

period can be derived from the maximum false alarm
rate that can be accepted in the actual application (i.e.
Type I error rate). This section explains the method that
determines the vigilance parameter r and the training
period d for a given window size M: The goal is to
obtain a predefined false alarm rate and, at the same
time, to maximise the recognition rate of unnatural
process data.
To find out appropriate values of vigilance and

learning period for a given window size, the false alarm
rate of Fuzzy ART is evaluated on batches of quality
measurements produces by the process in a natural
state. As previously observed, the false alarm rate is a
strictly increasing function on the vigilance parameter,
and it is a decreasing function on the training period.
Therefore, a suitable combination of the two parameters
can be found by iteratively increasing the learning
period and decreasing the vigilance parameter in order
to obtain the required false alarm rate. The method for
finding the values of learning period and vigilance of the
network is as follows:

1. Initialise: define the batch dimension of natural
patterns, which will form an initial training set (say
d), an upper bound of vigilance parameter (say
0orp1), a vigilance step-variation (say h > 0), and
an upper bound for false alarm rate (say amax).

2. Collect from the process in a state of natural
behaviour a set of data of length d þ M : Use this
set for network training by PLP approach (vigilance
equal to 1).

3. Collect from the process in a state of natural
behaviour a new set of data of length d þ M :
Evaluate the false alarm rate on this new set
of data (say a) setting the vigilance parameter equal
to r:

4. Test terminal criteria: if apamax then set the vigilance
parameter to r and the training period to d:

5. Upgrade the neural network training (incremental
learning mode of ART algorithm) by using the
testing data set of step 3, and the PLP approach.
After training, set a new (smaller) value of vigilance
upper bound by setting r ¼ r
 h: Go to step 3.
This algorithm has been applied for finding r and d

values of a neural network with window size M ¼ 75:
The reference manufacturing process has been simulated
by using the model of Section 4. The initial setting
parameters has been chosen as follows: d ¼ 250; r ¼
0:9; amax ¼ 0:27%; h ¼ 0:00925: The procedure stopped
after nine iterations and the following configuration of
the neural network has been obtained: d ¼ 2000; r ¼
0:8353: Fig. 6 depicts the Type I error rate produced by
the neural network in each step of the algorithm.
In Table 4 the Type I error and Type II error

estimators have been reported in the case of M ¼ 75;
r ¼ 0:8353 and d ¼ 2000: As already mentioned,
replications have been obtained using combinations of
15 training data sets and 15 different testing data sets.
Fig. 7 depicts the box-plots of the experimental results.
7. Concluding remarks

With the advanced data-collection systems (e.g.
coordinate measure machine, machine vision system
and scanning laser system), and the movements towards
computer-integrated manufacturing (CIM), a large
amount of measurements on each product can be
obtained at the point of manufacture. In this new
manufacturing scenario, a demand exists for the
automation of SPC implementation. New methods
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Fig. 7. Box-plots of experimental results. M ¼ 75; r ¼ 0:8353 and d ¼ 2000: The bottom of each box is at the first quartile, and the top is at the third

quartile value. The central line is at the median value.
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should be developed in order to accommodate rapid
data inputs rates, to utilise data from each product
manufactured and, in general, to take advantage of this
newly available data.
In this work, a new neural technique has been

investigated as promising tool for the above-mentioned
purposes. In particular, a Fuzzy ART neural system has
been presented for manufacturing quality monitoring.
The proposed neural system is mainly intended for
identifying unnatural process behaviour by detecting
changes in the state of the process.
Several characteristics of the Fuzzy ART neural

network make it a practical tool for quality control
applications over supervised ones. The most evident is
the short learning time required by the proposed
approach. Since the maximum vigilance parameter has
been exploited for network learning, the number of list
presentations required to achieve a training of the
network can be reduced to only one. Once a pattern is
presented to the neural network, it is stored into a
specific category and no more iteration is required to
learn it. As an example of computational time, by means
the proposed PLP learning approach, the neural net-
work requires around 2min to perform training for 7500
patterns of 75 points on a Pentium III 800MHz.
Potential industrial applications of the proposed

approach are continuous product manufacturing opera-
tions, including the manufacture of paper and wood
products, chemicals, and cold-rolled steel products. In
these cases, with the widespread exploitation of auto-
mated production and inspection, the tasks of SPC
traditionally performed by quality practitioners have to
be automated. Computer-based algorithms need to be
developed to implement the various quality control
tasks automatically. In addition, data collected at
regular time intervals, by automatic sensors, can be
serially correlated. Consequently, the strength of tradi-
tional SPC control charts to identify the presence of
assignable causes is weakened or invalidated.
The main advantage of the proposed system over
others neural techniques is that it does not require
previous information about unnatural pattern appear-
ances, related mathematical models, or probability
distribution functions. The proposed system can be
potentially adopted to signal any kinds of unnatural
pattern, so it provides a powerful diagnostic tool for
detecting assignable causes in real processes. Therefore,
the proposed method can be potentially used for
identifying changes in the process parameters in the
presence of correlation and it allows improved process
control in continuous manufacturing operations.
There are three main possible directions for future

research. First, the effect of departures from normality
and independence for the reference manufacturing
process must be thoroughly investigated. Second, the
neural network system can be improved in order to
recognise not just generic unnatural data, but also
specific unnatural patterns. Third, the applicability of
the proposed method can be extended and analysed in
the case of multivariate processes.
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Appendix. A

Given a sequence of training process natural output
designated as fltg; let

f
%
L1;

%
L2;y

%
Ldg ¼ f½l1; l2;ylM �; ½l2; l3;yl1þM �;y;

½ld ; ldþ1;y; ldþM �g ðA:1Þ
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be the sequence of the M-dimensional training
vectors, which result from the window coding stage.
Denoting by d (the learning period) the number of
the M-dimensional training patterns, let fI1; %

I2;y
%
Idg

be the series of M-dimensional training vectors that
result from the Coding stage, and let f

%
I c1; %

I c2;y%
I cdg be

the 2M-dimensional training vectors that result
from the complement coding stage at the F0 layer. The
following algorithm describes the systematic implemen-
tation of the PLP learning approach for Fuzzy ART
training.

1. Initialise the vigilance parameter to r ¼ 1 and
the number of committed nodes in F2 to N ¼ 0
(a committed node in F2 is a node that has
coded at least one input pattern; during the
training phase, Fuzzy ART operates over all of the
committed nodes along with a single uncommitted
node).

2. Choose the nth input pattern ð
%
I cnÞ from the training

list (1pnpd).
3. Calculate the bottom-up inputs to the N þ 1 nodes in

F2 due to the presentation of the nth input pattern.
When calculating bottom-up inputs consider all
the committed nodes and the uncommitted node.
These bottom-up inputs are calculated according to
the following Eq. (A.2) where 1pjpN þ 1 and a (the
choice parameter) is arbitrarily chosen in the range
ð0;þNÞ:

Tjð
%
I cnÞ ¼

M

aþ 2M
if j is the uncommited node;

j
%
I cn4%

wc
j j

aþ j
%
wc

j j
if j is a commited node:

8>>><
>>>:

ðA:2Þ

4. Chose the node in F2 that receives the maximum
bottom-up input from F1. Assume that this node has
index J: Check to see whether this node satisfies the
vigilance criterion of Eq. (A.3).

j
%
I cn4%

wc
J j ¼ M ðA:3Þ

Three cases are now distinguished.
* If node J is the uncommitted node, it satisfies the

vigilance criterion since
%
wc

J ¼ ½1; 1;y1� )
j
%
I cn4%

wc
J j ¼ j

%
I cnj ¼ M: In this case, increase the

parameter N by one: this way a new uncommitted
node in F2 is introduced, and its initial weight
vector is chosen to be the ‘‘all-ones’’ vector. Go to
step 5.

* If node J is a committed node, and the top-down
weight vector is equal to

%
wc

J ¼
%
I cn; then the

vigilance criterion is satisfied since
%
wc

J ¼
%
I cn )

j
%
I cn4%

I cnj ¼ j
%
I cnj ¼ M: Go to step 5.

* Otherwise, exclude the node J by setting TJð
%
I cnÞ ¼


1; and go to the beginning of Step 3.
5. The top-down weight vector of node J is set equal to

%
wc

J ¼
%
I cn: If %

I cn is the last input pattern in the training
list ðn ¼ dÞ then the learning process is considered
completed. Otherwise, go to Step 2 to present the
next in sequence input pattern by increasing the index
n by one.
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